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ABSTRACT
This paper describes the use of Moveit motion planning software for

implementing an articulated robot based automatic pick and place

system for a retail warehouse. The proposed system is expected to

automatically pick things from a rack and place them in a tote and

vice-versa, based on an order �le. Currently, these tasks are carried

out by humans leading to higher cost of operation. The motion

planning methods are demonstrated through both simulation and

real world experiments. We believe that the details provided in the

paper will act as a tutorial for beginners and reference manual for

experienced researchers and practising engineers.
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1 INTRODUCTION
In the recent years, there has been an increase in the availability

of a�ordable commercial service robots[1] encouraging the devel-

opment of applications around service robots. Service robots refer

to the robots that assist humans to carry out tasks that are simple,

dull and repetitive in nature[2]; such robots can be utilized in per-

forming manual work to increase the e�ciency of industries. Big

corporations like Amazon employ thousands of people for handling

of goods stored in racks in their warehouses. These warehouses are

usually huge in size and can be as big as nine football pitches[3].

Daily operations in a warehouse involve stock assessment, pick-

ing, stacking, packing, unpacking of goods for order ful�lment and

transfer of goods from one place to another. Such operations in-

volve lot of manual work making a person walk over miles in a day

around the warehouse. As shown in left image of Figure 1, Amazon

was able to automate the process of transportation of goods around
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the warehouse by the use of mobile robots called Kiva systems[4]

that carry the racks around warehouse to a dedicated place where

the items are picked from or stacked into the rack. Still the process

of carrying an entire rack just to pick or stack few items is not

an e�cient procedure as it makes the robot consume more energy

and time to transfer the rack carefully. Hence, Amazon wants to

automate the process of picking and stacking of items using robot

manipulators so that the mobile robots just have to carry the re-

quired items instead of the rack. In this regard, Amazon has been

conducting an annual robotics challenge called ‘Amazon Picking

Challenge’[5] for the advancement of automation of picking and

stacking of items in a rack.

Figure 1: Left image shows Kiva systems carrying rack to
human for picking objects1. Right image shows the robot
manipulator system used for picking objects.

The challenge involves two tasks, namely pick and stow task. In

pick task the competitors are provided with a computer generated

JavaScript object notation (JSON) task �le containing information

of names of the items placed in the tote, names of the items in

each bin of the rack, and names of target items to pick from each

bin. The robot manipulator has to read the task �le and identify

location of each target item inside the corresponding bin. Once a

target item is found the manipulator has to carefully pick and place

the target item into a tote without damaging any item or the rack.

Similarly in stow task the competitors are provided with a JSON

task �le that contains information of the names of the items that

are placed in the tote, names of the items in each bin of the rack,

and names of target items in tote to be placed in rack. Here as well

the manipulator has to identify the target items’ location in the

tote. Once the target item is found the manipulator has to pick the

item from tote and place it any bin of the rack. At the end of each

1
Image Courtesy: http://tech.�rstpost.com/
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task the robot has to generate an output JSON �le specifying each

item’s �nal location in the rack and tote.

In the competition the teams are provided with a rack similar

to the racks used in the Amazon warehouses. The rack consists of

12 bins arranged in a 4 rows by 3 columns grid structure, the bins

can be one of two di�erent sizes 27cm × 30cm and 22cm × 30cm,

with all the bins extending upto a length of 35cm. The teams are

provided with 40 general household objects, some of the objects can

have multiple copies. The objects can be of di�erent sizes, shapes,

appearance, weight and hardness. The objects can be placed in

any orientation or position in the rack and tote, such a placement

of objects can have partial or complete occlusion of some of the

objects. In the pick task 12 target objects has to be picked from the

bins and placed in the tote, while in the stow task 12 target objects

has to be picked from tote and placed in the rack. Each task has to

be completed within a duration of 15 minutes. Point are awarded

for each right pick and place of an object, while points are deducted

for a wrong pick and place or damage of an object.

The competition provides us with real world problems which

can be broadly classi�ed into four main categories

• Motion planning for robot manipulator to carefully ma-

noeuvre around the rack and tote for pick and place of the

objects.

• Identi�cation and pose estimation of objects with partial

or complete occlusion, variation in lighting conditions,

varying position of camera.

• Calibration of camera, 3D sensor, laser sensor with robot

manipulator.

• Detection of rack, tote or any other nearby collision objects

within the workspace of the robot. This is needed so that

the robot is aware of collision with the environment.
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Figure 2: Block diagram of robot manipulator system for au-
tonomous pick and place of objects

Figure 2 shows the block diagram of the robot manipulator sys-

tem providing individual modules for the problem categories ex-

plained above. In Figure 1, the right image of shows our setup

consisting of UR5 arm with vacuum pipe suction based grasping

system. The steps involved in pick and place of objects from rack

is shown in Figure 3.

The focus of this paper is on the problem of motion planning for

the manipulator inside bins of the rack and outside the rack. The

details of the motion planning module is shown in the Figure 2. The

motion planning is divided into two fold, online motion planning

inside the bins of the rack and o�ine motion planning outside the

rack. The online motion planning is more challenging in nature

since the planning has to be made within the con�ned space of a bin

which can be as small as 22cm × 30cm in size, the problem becomes

more complicated considering the situation of target object being

present along with the other objects inside the bin. The algorithm

has to take into consideration of space that has to be provided for

the suction system of volume 7cm × 4cm × 35cm to move through

the bin to pick and bring the object out of bin without damaging

any object or the walls of the bin. O�ine motion planning refers

to the motion planning for movement of the arm for taking bin

view for object detection and moving arm to the tote for dropping

the object. These motions are pre-de�ned and repetitive in nature,

the challenge here lies in selecting the shortest path between the

current and target positions without colliding with any part of the

rack or tote setup.

Home
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Object
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Trajectory
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Figure 3: Flowchart for pick and place of target objects from
rack. Rack detection is a one timeprocedure, rest of the steps
are performed in continuous loop until all the objects are
pick and placed.

An overall view of the rest of this paper is provided as follows.

In the next section details of related work in the �eld of motion

planning is provided. In section 3 the individual components of

motion planning required for moving manipulator from its current

to target position has been described. The simulation and experi-

mental results have been provided in section 4. A detailed summary

and direction for future work is provided in section 5.

2 RELATEDWORK
A lot of research work has been done in the �eld of collision avoid-

ance based motion planning, an overview of these methods can be

found in [6]. Motion planning can be classi�ed into two groups -

local and global. Local methods consists of planning using limited

information of the planning environment, while in global methods

a comprehensive model of the entire robot workspace is used for

�nding a global optimal trajectory. Local methods based motion

planning can be implemented using potential �eld approaches [7]

[8] [9]. Probabilistic roadmaps (PRM) [10] [11] and probabilistic

cell decomposition [12] [13] are approaches used for global opti-

mization of trajectory. Rapidly exploring random tree (RRT)[14] is

one of the widely used PRM motion planning algorithm. Motion

planning algorithms have been made available through open source

libraries like open motion planning library (OMPL)[15].
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3 DESCRIPTION OF COMPONENTS OF
MOTION PLANNING

Motion planning refers to generation of a trajectory in joint space

(in terms of joint angle position or angular velocities) that a manip-

ulator has to trace to reach a target pose from its initial pose. The

components that are involved in generation of a motion plan are 1)

generate a path (set of way points) in Cartesian space to reach the

target pose, 2) convert the the Cartesian way points to joint space

angular position or velocities using inverse kinematics algorithm,

3) a controller to transfer the joint space trajectory into actions

onto the real robot manipulator, 4) input from collision detection

system that enables to generate path plan without any collision of

the robot with its environment.

3.1 Automatic Path Generator
The storage rack consists of 12 rectangular bins with front opening

for each bin. The objects could be placed lying on the base of a bin

or leaning on the walls of the bin. It is assumed that all the objects

are within the workspace of the robot manipulator, objects are

static in the rack with no relative motion with respect to the rack. A

straight line path generation algorithm that exploits the geometry

of the bins has been implemented.The placement of objects in the

bin enables the consideration one of three default orientations for

picking any object. The default orientations for picking objects are

picking from the top surface, picking from the left side and right

side of the object. The challenges in this method are i) �gure out

the proper orientation of the target pose and ii) planning a path

that manipulator has to trace to pick the object without collision

with any part of the rack.

Figure 4: Left image shows bin corners (red color) and cen-
troids (green color) which form the bin information (binf o ).
Right image shows the object information (oinf o ) top, left
and right corners (red color) and object centroid (yellow
color). binf o , oinf o are used in the auto path generation al-
gorithm.

Algorithm 1 presents the pseudo code used for the path gen-

eration in Cartesian space and trajectory in joint space. The path

generation procedure detects the maximum space available to pick

the target object and then chooses the orientation to pick the object.

The algorithm takes input oinf o target object information, binf o
bin information,minдr minimum gap required for the suction pipe.

oinf o contains object’s topmost, leftmost, rightmost and centroid

information found through object detection algorithm as shown in

right image of Figure 4, similarly binf o contains the bin’s topmost,

leftmost, rightmost and centroid information found through rack

detection algorithm as shown in left image of Figure 4. An estimate

of the space available between the object and bin in three directions

is made, the side having maximum space for the suction pipe is

chosen as the picking direction. Based on the picking direction a

pre-de�ned orientation is combined with each way point in the

trajectory path. The rack and object detection algorithm is not

discussed as it is not within the scope of this paper.

Algorithm 1 Trajectory Planning

1: procedure trajectory_planning(oinf o ,binf o ,minдr )

2: (olef t ,or iдht ,otop ,ocent ) ← parse (oinf o )
3: (blef t ,br iдht ,btop ,bcent ) ← parse (binf o )

4: olд ←
���olef t − blef t

���
5: orд ←

���or iдht − br iдht
���

6: otд ←
���otop − btop

���
7: if (otд > olд & otд > olд & otд > minдr ) then
8: path ← Create set of way points in straight line at

interval of 2cm from current position to top end point of the

object

9: trajectory← IK(path, top surface pick)

10: else if (olд > otд & olд > orд & olд > minдr ) then
11: path ← Create set of way points in straight line at

interval of 2cm from current position to left end point of the

object

12: trajectory← IK(path, left surface pick)

13: else if (orд > otд & orд > olд & orд > minдr ) then
14: path ← Create set of way points in straight line at

interval of 2cm from current position to right end point of the

object

15: trajectory← IK(path, right surface pick)

16: else
17: return with no trajectory generated

18: end if
19: return trajectory
20: end procedure

3.2 Inverse Kinematics
Kinematics of robot manipulator constitutes of two components

namely forward kinematics and inverse kinematics. Forward kine-

matics refers to solving kinematic equations to �nd the end-e�ector

pose of manipulator based on the current joints of the manipulator.

Similarly inverse kinematics is a procedure to solve for joint posi-

tion or velocities using set of robot kinematic equations to achieve

a desired end-e�ector pose for the manipulator.

Mathematical expressions for forward and inverse kinematics is

given as

xee f = f (q)

q = f −1 (xee f )

where xee f = (x ,y,z,θr ,θp ,θy ) is the end-e�ector pose andq =
(q0,q1, · · · ,qn−1) is the joint positions of a n-degrees of freedom

(DOF) manipulator. The orientation of end-e�ector pose is speci�ed

by θr roll, θp pitch, θy yaw. In algorithm 1, pre-de�ned values for
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(θr ,θp ,θy ) are used for the target end-e�ector pose based on the

direction chosen to pick an object.

Inverse kinematics can be found by solving kinematic equations

using di�erent approaches like algebraic method, Jacobian inver-

sion, non-linear optimization. Various open source libraries are

readily available for solving inverse kinematics like Jacobian inver-

sion based kinematics and dynamics library (KDL) [16], analytical

kinematics solver IKFAST [17], [18]. In the current application

inverse kinematics library TRAC-IK is used which runs two al-

gorithms, an extension to KDL Jacobian inversion method and

sequential Quadratic programming (SQP) non-linear optimization

approach which is presented in paper [19]. TRAC-IK is better com-

pared to the traditional IK algorithms in terms of its success rate

and the time required for computation
2
.

3.3 MoveIt!
MoveIt! is a set of software packages used for motion planning, envi-

ronment monitoring, 3D perception, kinematics, trajectory control

of robot manipulators[20]. It is a user-friendly platform that can be

used to develop industrial, research and commercial robot manipu-

lator applications. Moveit uses thread based architecture and par-

allelizes the motion-planners and collision checking. As speci�ed

in [20], Moveit provides options to interface with multiple motion

planning libraries like OMPL[15], search based planning library

(SBPL) [21], stochastic trajectory optimization for motion planning

(STOMP) [22], optimization based library CHOMP[23]. It is eas-

ily con�gurable with multiple kinematics libraries like KDL[16],

IKFAST[17], TRAC-IK[19]. It provides a graphical user interface

(GUI) application called moveit setup assistant, the GUI as shown

in Figure 5 can be used to generate a moveit con�guration package,

in this package the plugin for motion planning and kinematics

libraries to be used can be speci�ed. For collision avoidance moveit

Figure 5: Moveit setup assistant GUI application to create
con�guration package and the URDF model of UR5 manip-
ulator with suction cup as end-e�ector. Image shows how to
specify a manipulator planning group in the form of a kine-
matics chain.

facilitates adding collision objects, octomaps into robot work en-

vironment. The collision objects are used as a way to include the

rack into planning environment. After the detection of the rack as

2
https://bitbucket.org/traclabs/trac_ik.git

shown in Figure 4, the bin corners information is used in adding

rectangular plates as collision objects to represent four walls of each

bin in the rack as shown in Figure 6. Octomaps are 3D volumetric

representation of environment which can be generated using the

input from a 3D sensor [24], Figure 7 shows the octomap of the rack.

Octomap is used in avoiding collision with nearby objects while

picking a target object. In the current application moveit is used to

Rectangular plates

as collision objects

Figure 6: Rectangular plates added as collision objects for
four walls of each bin in the rack.

combine the path generation algorithm described in algorithm 1,

collision avoidance procedure, inverse kinematics and transferring

the joint space trajectory to the real robot. Moveit provides visual-

ization of trajectory for the motion planning in simulation using

robot operating system (ROS)[25] and Rviz visualizer.

Objects Objects

Figure 7: Left image shows octomap generated from the 3D
sensor input. Right image shows rack with 3 objects placed
in a bin.

4 SIMULATION AND EXPERIMENTAL
RESULTS

The algorithms have been implemented on Dell Latitude E7450

laptop with Intel i7 2.6GHz quad-core (used single core) processor

and 15.6GB available RAM. All of the programs are implemented

on ROS Indigo platform. The experiments have been performed

in simulation using Gazebo. The pick and place system using uni-

versal robot UR5 manipulator and Barrett WAM manipulator are

provided in link [26]. UR5 is a six-axis lightweight, �exible and

collaborative industrial manipulator with motor driven joints and

payload capacity of 5kgs. Barrett WAM is a seven-axis cable driven

light weight manipulator with its actuators placed at its base, it has

a payload capacity of 3kgs. In this section the results of auto path

https://bitbucket.org/traclabs/trac_ik.git
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Images (a-c, e-g) show the way points (red color) of auto path generation algorithm for picking objects using suction
system. Images (a-c) are for real objects and (e-g) are for objects in simulation. Images (a), (e) shows path for picking from right
side of the object; (b), (f) shows path for picking from top side of the object; (c), (g) shows path for picking from left side of the
object. Images (d), (h) shows the way points (red color) of path generated using octomap for collision avoidance for picking
object using gripper. The normal vector (blue colored arrow) in image (d) shows the approach direction for gripper.

generation, time required for di�erent approaches of path planning

have been provided.

4.1 Auto path generation
As described in section 3.1 a straight line path is generated to

reach a target object inside the bin. The path generation algorithm

generates the path which extends 10 cm away from opening of the

bin till the target object. The set of way points along the path are

equally spaced at interval of 2cm. The same path is used for both

entering the bin and retrieval. The minimum gapminдr required

for the suction cup is set at 8cm. The results of path generation for

the three di�erent picking directions for suction based grasping

system are shown in images (a-c,e-g) of Figure 8. It is observed that

the number of way points in a path varies from 10 to 30.

Simulation of generation of trajectory path using octomaps as

collision avoidance method have also been performed. The path

generation results for picking objects using a gripper based grasping

system is shown in images (d), (h) of Figure 8. The inclusion of

octomap for path generation helps in avoiding collision with the

nearby objects while picking the target object.

4.2 Time requirements
The di�erent poses that the robot arm has to take for pick and

place of an object from rack are shown in Figure 9. Home pose is

a pose that arm takes before going for picking an object. At bin

view pose 3D image of the target bin is captured to detect the target

object pose. Joint space trajectory for arm is generated to reach

the object which constitutes as grasp pose, then the arm takes the

tote drop pose to drop the object. The time required for performing

these steps are provided in table 1. The average time required for

(a) (b)

(c) (d)

Figure 9: Image shows di�erent poses involved in pick and
place of co�ee box in a rack (a) home pose (b) bin 4 view pose
(c) object grasp pose (d) object drop pose.

generating rectangular plates as rack collision object and the time

required for trajectory generations using octomap for collision

avoidance have also been tabulated.
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Table 1: Time requirements.

S. No.

Compo-

nent

Description

Time

(seconds)

1

Motion 1

(real robot)

Home pose to bin view

pose

3.5

2

Auto path

generation

Creation of way points 0.0154

3

Joint space

trajectory

Inverse kinematics for all

the way points

0.015

4

Motion 2

(real robot)

Enter bin to grasp object

and coming out of bin

9.11

5

Motion 3

(real robot)

Reach the object drop

pose

4.97

6

Motion 4

(real robot)

Motion from object drop

to home pose

3.41

7

Rack as

collision

object

Setting up of rectangular

plates as collision objects

for motion planning

0.49

8

Octomap

collision

avoidance

Path generation using

octomap for collision

avoidance

1.31

4.3 Useful tricks to work with Gazebo
simulation and Moveit

Following are some of the useful tricks that can be used to get

things working in Gazebo simulation and Moveit.

• In the universal robot description format (URDF) �le for

robot always specify the world frame link at place where

the robot connects with the ground plane. In case the world

link is not attached to ground then the robot keeps sliding

in Gazebo simulation.

• Use the argument "sim" in moveit planning execution launch

�le to switch between sending the trajectory joint angles to

real robot and robot in Gazebo simulation. This is useful as

it avoids creating a separate procedure to send joint space

trajectory to trajectory controllers in Gazebo.

• For trajectory path planning using octomap RRTConnect

has been used as the default setting in the OMPL con�g �le.

RRTConnect is the fastest in �nding the trajectory path,

other libraries fails to produce the trajectory path most of

times.

• In moveit sensor manager launch �le the octomap reso-

lution has been set to 2cm, this reduces the computation

time for path generation using octomap.

5 SUMMARY AND FUTUREWORK
This paper provides the implementation details of motion planning

for picking objects placed in a rack. An algorithm for auto path

generation to pick objects using any one of three pre-de�ned orien-

tations for the manipulator has been described. Moveit is used to

combine the path generation with collision avoidance to generate

the trajectory in joint space, and execute the trajectory commands

on the robot manipulator. The experimental results for the path

generation have been provided for robot in simulation and real

robot. The use of octomap in planning scene has enabled gener-

ation of path avoiding collision with nearby objects. The future

e�ort will be in generation of trajectory for picking objects in any

orientation.
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